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ABSTRACT

A heavy rain or a dry period can produce an anomaly in soil moisture, and the dissipation of this anomaly
may take weeks to months. It is important to understand how land surface models (LSMs) used with atmospheric
general circulation models simulate this soil moisture ‘‘memory,’’ because this memory may have profound
implications for long-term weather prediction through land–atmosphere feedback.

In order to understand better the effect of precipitation and net radiation on soil moisture memory, the NASA
Seasonal-to-Interannual Prediction Project (NSIPP) Catchment LSM and the Mosaic LSM were both forced with
a wide variety of idealized climates. The imposed climates had average monthly precipitation ranging from 15
to 500 mm and monthly net radiations (in terms of water equivalent) ranging from 20 to 400 mm, with consequent
changes in near-surface temperature and humidity. For an equivalent water holding capacity, the two models
maximize memory in distinctly different climate regimes. Memory in the NSIPP Catchment LSM exceeds that
in the Mosaic LSM when precipitation and net radiation are of the same order; otherwise, memory in the Mosaic
LSM is larger.

The NSIPP Catchment and the Mosaic LSMs were also driven offline, globally, for a period of 15 yr (1979–
93) with realistic atmospheric forcing. Global distributions of 1-month-lagged autocorrelation of soil moisture
for boreal summer were computed. An additional global run with the NSIPP Catchment LSM employing the
Mosaic LSM’s water holding capacities was also performed. These three global runs show that while some of
the intermodel difference in memory can be explained (following traditional interpretations) in terms of differ-
ences in water holding capacity and potential evaporation, much of the intermodal difference stems from dif-
ferences in the parameterizations of evaporation and runoff.

1. Introduction

A period of heavy rainfall or drought can produce an
anomaly in soil moisture that may take weeks or months
to dissipate. In effect, the soil can ‘‘remember’’ the wet
or dry weather conditions that caused the anomaly long
after these conditions are forgotten by the atmosphere.
Soil moisture memory can be characterized in various
ways, including anomaly decay timescales and 1-month-
lagged moisture autocorrelations.

Long-term records of soil moisture are not available
in many parts of the world, and thus our ability to quan-
tify soil moisture memory from soil moisture obser-
vations is strongly limited. The Global Soil Moisture
Data Bank (Robock et al. 2000), however, does have
substantial data, mainly in Asia. Soil moisture anomaly
decay timescales of 2–3 months have been derived by
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analyzing in situ soil moisture data from stations in
Russia (Vinnikov and Yeserkepova 1991; Vinnikov et
al. 1996). Entin et al. (2000) derived timescales of about
2 months from Chinese, Mongolian, and Illinois data.
Available data show that the timescales of soil moisture
anomaly dissipation vary spatially (Vinnikov and Yes-
erkepova 1991), presumably due to spatial variability
of surface characteristics and prevailing climatic con-
ditions.

Soil moisture memory is particularly relevant to the
seasonal prediction of precipitation, temperature, and
other meteorological variables. This is because the per-
sistence of a soil moisture anomaly into a forecast period
allows the anomaly to influence meteorological vari-
ables during the forecast period—various modeling
studies (e.g., Shukla and Mintz 1982; Oglesby and Er-
ickson 1989; Koster and Suarez 1995, 1996b; Liu and
Avissar 1999a,b; Dirmeyer 2000) have shown that the
atmosphere responds somewhat predictably to anoma-
lies in land surface moisture state. Indeed, initializing
the land surface in a seasonal forecasting system may
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be as useful as initializing the system’s coupled ocean
model, particularly for summer forecasts in transition
zones between dry and humid regions (Koster et al.
2000b).

The land surface model (LSM) of a seasonal fore-
casting system performs the water and energy budget
calculations over the land surface and is thereby re-
sponsible for determining (and taking advantage of ) soil
moisture memory. Simulated memory can, in fact, be
strongly LSM-dependent, and this can lead to forecast
error. Depending on its structure, an LSM may under-
estimate memory relative to nature, thereby underesti-
mating predictability in the system, or it may overes-
timate memory, leading to overconfident seasonal pre-
dictions. When relying on land moisture initialization
in a seasonal prediction system, the nature of the LSM’s
simulated soil moisture memory must be well under-
stood.

Delworth and Manabe (1988) pioneered the study of
soil moisture memory in AGCMs, using a first-order
Markov process model to relate memory to potential
evaporation and soil water holding capacity. Koster and
Suarez (2001) provide a more comprehensive equation
that relates soil moisture autocorrelation to four separate
features of the physical system: 1) seasonality in the
statistics of the atmospheric forcing, 2) the sensitivity
of evaporation to soil moisture in the LSM, 3) the sen-
sitivity of runoff to soil moisture in the LSM, and 4)
correlation of forcing with antecedent soil moisture.
(See section 2.) They successfully tested the equation
on the global scale against atmospheric general circu-
lation model (AGCM) data. The equation provides a
quantitative framework for analyzing a given LSM’s
memory characteristics and for pointing out how defi-
ciencies in the LSM–atmosphere system may compro-
mise the simulation of memory.

A potential, yet untested, value of the equation lies
in its use to contrast the memory characteristics of dif-
ferent LSMs. Why, under the same atmospheric forcing,
does one LSM preserve a soil moisture anomaly longer
than another? Can we evaluate which LSM has the more
realistic memory based on the factors that control it? In
the present paper, through a series of ‘‘offline’’ exper-
iments, we use the equation to contrast the memory
behavior of the Mosaic LSM (Koster and Suarez 1996a)
and the fundamentally different National Aeronautics
and Space Administration (NASA) Seasonal-to-Inter-
annual Prediction Project (NSIPP) Catchment LSM
(Koster et al. 2000a). In the first experiment (section
3), a wide range of idealized precipitation and radiation
forcing is applied to each LSM. The two LSMs are
found to respond quite differently to the forcing; certain
climatic regimes favor memory in the Mosaic LSM,
whereas other regimes favor memory in the NSIPP
Catchment LSM. The autocorrelation equation allows
us to explain this climate dependence. In the second
experiment (section 4), global arrays of realistic at-
mospheric forcing are applied to each model. This re-

sults not only in global arrays of soil moisture memory
for each model, which can be directly compared, but
also in global arrays of the factors that control each
model’s memory. Given the dearth of soil moisture ob-
servations on the global scale, it is the evaluation of
these factors that may someday lead to an evaluation of
the accuracy of simulated soil moisture memory.

2. Soil moisture autocorrelation equation

Here, we explain the basis of the soil moisture au-
tocorrelation equation used later in this study. The read-
er is referred to Koster and Suarez (2001) for a more
detailed description of its derivation. Koster and Suarez
(2001) assumed that the water balance for the soil col-
umn of a typical LSM, for time period of n of year y,
can be written (in the absence of snow) as

C w 5 C w 1 P 2 E 2 Q ,s n11,y s n,y n,y n,y n,y (1)

where Cs is the column’s water holding capacity, wn is
the average degree of saturation in the column as a
whole (instantaneous value at the beginning of time pe-
riod n), P is precipitation, E is the total evaporation
(which includes transpiration, bare soil evaporation, and
interception loss), and Q is the total runoff (which in-
cludes both surface and subsurface runoff ). The values
P, E, and Q are accumulated fluxes during time period
n. The evaporation and runoff fluxes generated by any
LSM typically reflect complex parameterizations in-
volving numerous state variables and parameters. Nev-
ertheless, following the approach of Koster and Milly
(1997), we approximate the dependence of evaporation
and runoff on soil moisture with simple empirically fit-
ted linear functions:

Q w 1 wn,y n,y n11,y
5 a 1 b, and (2)1 2P 2n,y

E w 1 wn,y n,y n11,y
5 c 1 d. (3)1 2R 2n,y

Here, R is the accumulated net radiation during the
month n (normalized by the latent heat of vaporization,
to have the same units as E). The empirically derived,
LSM specific parameters a, b, c, and d are established
through analysis of several years of model simulations.

Equations (2) and (3) are substituted into (1). Then,
by separating w, P, and R into their mean components
for the given time of year (indicated by over lines) and
corresponding interannual anomalies, the result simpli-
fies to the following semi-implicit equation:

cov(w , w )n n11r 5
s sw wn n11

 cR aPn n2 2 2 s C C cov(w , F )w s s n nn5 1 , (4) 
2s cR aP sw n n wn11 n2 1 1 

C Cs s 
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where Fn is a particular combination of forcing terms
and model parameters. In (4), the autocorrelation of soil
moisture is expressed as a function of four distinct
terms: (a) s /s , which relates to seasonality in thew wn n11

statistics of the atmospheric forcing; (b) c /Cs, whichRn

relates to the sensitivity of evaporation to soil moisture
variations; (c) a /Cs, which relates to the sensitivityPn

of runoff to soil moisture variations; and (d) cov(wn,
Fn)/s , which reflects both the memory of external2

wn

forcing and land–atmosphere feedback. Therefore, (4)
not only helps us estimate r, but it also provides a unique
means of characterizing the contributions of atmospher-
ic forcing (through and ) and the overall structureR Pn n

of the land surface model (through the parameters a, c,
and Cs) to soil moisture memory. Koster and Suarez
(2001) demonstrate that (4) indeed reproduces the soil
moisture autocorrelations generated by the NSIPP
AGCM.

3. Models

a. The Mosaic LSM

The Mosaic LSM (Koster and Suarez 1992, 1996a),
a derivative of the Simple Biosphere (SiB) Model of
Sellers et al. (1986), computes areally averaged energy
and water fluxes from the land surface in response to
meteorological forcing. The model allows explicit veg-
etation control over the computed surface energy and
water balances, with environmental stresses acting to
increase canopy resistance and thus decrease transpi-
ration. The vertical structure of the model includes a
canopy interception reservoir and three soil reservoirs:
a thin surface layer, a middle layer that encompasses
the remainder of the root zone, and a lower ‘‘recharge’’
layer at the bottom. Bare soil evaporation, transpiration,
and interception loss occur in parallel, and runoff occurs
both as overland flow during precipitation events and
as groundwater flow out of the recharge layer. A com-
plete snow budget is included. Many components of the
model mimic the corresponding components of SiB, in
particular the parameterization of stomatal resistance.

The Mosaic LSM accounts for subgrid heterogeneity
in surface characteristics by dividing each grid cell into
several different subregions, ‘‘tiles,’’ each containing a
single vegetation or bare soil type. The number and
relative sizes of the tiles in a given grid cell are deter-
mined from observed vegetation maps. Energy and wa-
ter balance calculations are performed separately over
each relatively homogeneous tile, and each tile main-
tains its own prognostic variables.

b. The NSIPP Catchment LSM

Most LSMs coupled to atmospheric GCMs effectively
consider soil moisture to be spatially uniform over a
grid cell, which may span hundreds of kilometers. Run-
off generation and subsurface soil moisture movement

in nature, however, are largely controlled by the topog-
raphy of the land surface and small-scale spatial het-
erogeneity in soil moisture. Even the Mosaic LSM,
which breaks a grid cell into subgrid tiles, cannot resolve
the relevant soil moisture heterogeneity. Typical surface
vegetation–atmosphere transfer (SVAT) models are thus
arguably ill-equipped to model runoff correctly [and, by
extension, evaporation correctly (Koster and Milly
1997)]. Note also that imposing quasi-rectangular at-
mospheric grid elements on the land surface itself is a
rather artificial representation, because in nature soil
moisture movement and runoff generation take place
over irregularly shaped, topographically defined hydro-
logic catchments.

This is the motivation behind the development of a
new LSM, the NSIPP Catchment LSM (Koster et al.
2000a; Ducharne et al. 2000). This LSM considers the
irregularly shaped hydrologic catchment as the funda-
mental element on the land surface for computing land
surface processes. Each catchment is partitioned into
three regimes: 1) a saturated region, from which evap-
oration occurs with no water stress and over which rain-
fall is immediately converted to surface runoff, 2) a
subsaturated region, from which transpiration occurs
with no water stress and over which rainwater infiltrates
the soil, and 3) a ‘‘wilting’’ region, in which transpi-
ration is shut off. The relative areas of these regions
vary dynamically; they are unique functions of the
NSIPP Catchment LSM’s three water prognostic vari-
ables and the topographic characteristics of the catch-
ment. By continually partitioning the catchment into
hydrologically distinct regimes and then applying dif-
ferent regime-appropriate physics within each regime,
the Catchment LSM should, at least in principle, provide
a more realistic representation of surface energy and
water processes.

4. Experiments

a. Idealized experiment: Sensitivity of soil moisture
memory to climatic conditions

The impact of different climate conditions on the au-
tocorrelation of soil moisture is investigated here in an
idealized, perpetual-July experiment. By the construct
of the experiment, two of the four controls identified in
(4), namely, those associated with seasonality and per-
sistence in the statistics of the atmospheric forcing, have
little impact on the simulated autocorrelation of soil
moisture. This experiment is instead designed to inves-
tigate the impact of the evaporation and runoff terms
on soil moisture autocorrelation under a wide variety of
monthly precipitation and net radiation rates. For sim-
plicity, all soil properties (including water holding ca-
pacity) and vegetation properties are the same for both
LSMs, for all simulations.
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1) ATMOSPHERIC FORCING DATA

We arbitrarily selected a catchment from the Red–
Arkansas River basin in the southern Great Plains of
the United States to provide many of the model param-
eter values for the idealized experiment. The catchment
is characterized by grass with an average vegetation
cover of 70%, loam soil, and moderate topography. For
the forcing, we first generated 25 sets of monthly pre-
cipitation time series (each series consisting of 200 ran-
dom monthly totals) with the mean precipitation of each
time series varying from 15 to 500 mm. The subsequent
temporal disaggregation of the monthly totals was based
on the hourly precipitation time series at the chosen
catchment for July of 1979 as provided by Project for
Intercomparison of Land-surface Parameterization
Schemes Phase 2c (PILPS2c; Wood et al. 1998). In es-
sence, for each forcing month, the hourly PILPS2c pre-
cipitation data were rescaled by a constant factor to
produce the desired monthly total.

Generating a series of radiation forcing data was a
bit more complicated. Specifications of downward
shortwave and longwave radiation values had to be con-
sistent with specified near-surface air temperature,
which in turn had to be consistent with near-surface
specific humidity. The procedure we used to generate
these data is described in the appendix. The result of
the procedure was 20 sets of downward longwave and
shortwave radiation, temperature, and humidity data,
each set consisting of 200 months of hourly values.

All combinations of the 20 radiation and 25 precip-
itation time series were used to drive each LSM, yielding
a total of 400 different 200-month simulations for each
LSM. The actual mean accumulated net radiation for
each experiment, once the simulated surface tempera-
ture was accounted for, was found to vary from 28 to
412 mm month21 (using latent heat of vaporization to
convert energy to water equivalent). Again, the precip-
itation varied from 15 to 500 mm month21. The 400
combinations thus sample climates that are cold and wet,
cold and dry, hot and dry, hot and wet, and everything
in between.

2) EXPERIMENTAL RESULTS

The contour maps in Figs. 1a,b show how the 31-day
lagged autocorrelation of soil moisture varies with
monthly mean net radiation and precipitation for the
two LSMs. Each contour map is based on 400 data
values, one for each 200-month simulation. The differ-
ences in the autocorrelations produced by the two LSMs
is shown in Fig. 1c. Figure 1c indicates that the NSIPP
Catchment LSM has larger memory in climates where
the monthly mean net radiation is of the same order as
monthly mean precipitation. In contrast, the Mosaic
LSM seems to have larger memory in climates with low
net radiation and high precipitation or with high net
radiation and low precipitation—i.e., in cold, wet cli-

mates or in hot, dry climates. Note that both LSMs (as
applied here) use the same water holding capacity and
are forced with essentially the same potential evapo-
ration at any given point on the plot. The fact that their
memories still differ illustrates the inadequacy of the
practice (e.g., Delworth and Manabe 1988) of relating
soil moisture memory to these two quantities alone.

We can employ (4) to explain the differences in mem-
ory in terms of differences in model structure. Since
this is a perpetual-July experiment, the first term (sea-
sonality; s /s ) and the fourth term (persistence inw wn n11

the atmospheric forcing; cov(wn, Fn)/s ) of (4) are in-2
wn

significant. Intermodel differences in the evaporation
term (c /Cs) and the runoff term (a /Cs) must beR Pn n

behind the differences in Fig. 1c. Furthermore, because
Cs, , and are the same in both models at any givenR Pn n

point on the contour map, the intermodel differences in
the autocorrelation of soil moisture in Fig. 1c must re-
flect differences in the values of a and c. Recall from
section 2 that a describes the sensitivity of runoff ratio
to soil moisture and c describes the sensitivity of evap-
orative fraction to soil moisture.

Figures 1d and 1e show the differences in the c /Rn

Cs and a /Cs terms, respectively (NSIPP CatchmentPn

minus Mosaic). Relative to the Mosaic LSM, the NSIPP
Catchment LSM has much higher values of c /Cs inRn

hot, dry climates, and it has higher values of a /Cs inPn

cold, wet climates. Thus, as indicated by (4), soil mois-
ture memory in the NSIPP Catchment LSM is much
smaller in these climates. Analysis of the structures of
the two LSMs explains, to some extent, these differences
in a and c values. In hot, dry climates, soil moisture in
the Mosaic LSM’s root zone is typically below the wilt-
ing point, preventing transpiration. Because the wilting
point in the one-dimensional Mosaic LSM is not crossed
with a small addition or subtraction of moisture, the
sensitivity of total evaporation to variations in profile
soil moisture is very small—c in (4) is very small. In
the NSIPP Catchment LSM, on the other hand, the re-
lationship between dry conditions and wilting is quite
different. As the surface element gets drier, the areal
fraction of the root zone undergoing wilting gets larger.
Even when a large fraction of the element is experi-
encing wilting (i.e., even in very hot, dry conditions),
the addition or subtraction of additional moisture to the
profile can still change the transpiration rate, since it
basically acts to change further the areal fraction of
wilting. Thus, for the NSIPP Catchment LSM, c can be
sizeable even in hot, dry climates.

In cold, wet climates, runoff in both the Mosaic LSM
and the NSIPP Catchment LSM is strongly sensitive to
soil moisture—a is large for both models. In the Mosaic
LSM, drainage out of the soil column increases expo-
nentially with the log of soil moisture to a maximum
rate, obtained when the soil is saturated. Similarly, in
the NSIPP Catchment LSM, baseflow out of the catch-
ment increases exponentially with soil moisture to the
high rate obtained when the soil is saturated (see Fig.



1138 VOLUME 4J O U R N A L O F H Y D R O M E T E O R O L O G Y

FIG. 1. (a) Contour plot of 31-day-lagged autocorrelation of soil moisture (r31) for varying monthly mean precipitation and net radiation
for the Mosaic LSM. (b) Corresponding contour plot for the NSIPP Catchment LSM. (c) Differences in r31 between the two LSMs (NSIPP
Catchment minus Mosaic). (d) Differences in evaporation term, c /Cs (NSIPP Catchment minus Mosaic). (e) Differences in runoff term,Rn

a /Cs (NSIPP Catchment minus Mosaic). (f ) Points representing pairs of Jul mean net radiation and precipitation values from the globalPn

dataset of ISLSCP-I. Approximate lines of constant dryness index ( / ) bound the shaded region. (c)–(f ) Shaded region shows the climatesR Pn n

for which NSIPP Catchment’s corresponding variable exceeds Mosaic’s.
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FIG. 2. Plot of differences in 1-month-lagged (JJA) r (NSIPP Catch-
ment LSM minus Mosaic LSM) vs dryness index ( / ). The solidR Pn n

line was obtained through simple binning. The two vertical lines show
the climate region (0.68 , / , 3.33) where the Catchment LSM’sR Pn n

r is greater than that of the Mosaic LSM in the idealized experiment
(Fig. 1f ). Note that net radiation is scaled by the latent heat of va-
porization to make the ratio dimensionless.

FIG. 3. (a) Global distribution of 1-month-lagged (for JJA) r for the NSIPP Catchment LSM. (b) Estimated r for JJA using (4) for the NSIPP
Catchment LSM. (c) Global distribution of 1-month-lagged r (using Aug simulations) for the Mosaic LSM. (d) Estimated r for Aug using
(4) for the Mosaic LSM.

2 of Ducharne et al. 2000). The differences seen for
cold, wet climates in Fig. 1e simply reflects the fact that
the rate of change for wet soils, while high for both
models, turns out to be higher for the NSIPP Catchment
LSM.

The reason for the NSIPP Catchment LSM’s higher
memory when precipitation is approximately balanced
by net radiation is not as easy to pin down. Consider,
though, the argument set forth earlier for hot, dry cli-
mates. In these climates, soil moisture reductions lead
to reductions in the NSIPP Catchment LSM’s evapo-
ration but not the Mosaic LSM’s evaporation because
in the latter model, evaporation has already been shut
off by wilting vegetation. In a sense, this implies that
the Mosaic LSM goes from full transpiration to zero
evaporation over a smaller soil moisture range. The
compressed transition implies that the sensitivity of
evaporation to soil moisture over this range (character-
istic of intermediate climates) is higher for the Mosaic
LSM than for the NSIPP-Catchment LSM, which in turn
implies a lower memory for the Mosaic LSM.

To give a rough indication of the relevance of the
climates tested in the idealized experiment, we com-
puted the global distributions of July-mean net radiation
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FIG. 4. (top) Map of water holding capacities (mm) (Cs) used by the NSIPP Catchment LSM. (middle)
Corresponding map for the Mosaic LSM. (bottom) Differences in Cs (NSIPP Catchment minus Mosaic).
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and precipitation from the International Satellite Land
Surface Climatology Project Initiative I (ISLSCP-I) da-
taset (Sellers et al. 1996) on 18 grid cells, using near-
surface air temperature to approximate surface temper-
ature for the upwelling longwave radiation calculation.
The values over land are plotted on the contour plot of
autocorrelation differences (Fig. 1c) to produce Fig. 1f.
Note that the climate regime in which the NSIPP Catch-
ment LSM produces a longer memory than the Mosaic
LSM is approximately marked in Fig. 1f by lines of
constant dryness index ( / ; dryness index equalsR Pn n

0.68 and 3.3). Figure 1f suggests that for most of the
drier areas of the earth, the Mosaic LSM would provide
the higher soil moisture memory. The NSIPP Catchment
LSM, however, would nevertheless provide the higher
memory over a substantial fraction of the land surface,
perhaps even the fraction that matters most for seasonal
prediction—Koster et al. (2000b) demonstrate the im-
portance of land–atmosphere feedback in regions that
are not too dry and not too wet.

Again, it should be noted that this idealized analysis
ignores the impacts of seasonality, forcing persistence,
and variations in water holding capacity. All aspects of
the problem are addressed in our less idealized exper-
iment, discussed next.

b. Global distributions of soil moisture memory

In this section, realistic atmospheric forcing is applied
globally to generate soil moisture memory distributions
for both LSMs. The earth’s land surface was resolved
into 36 716 hydrologic catchments through the appli-
cation of high-resolution (1 km) digital elevation data
(Verdin and Verdin 1999). Land cover characteristics,
soil hydrologic properties, and topographic character-
istics for those catchments were derived from a variety
of recent global datasets. Both LSMs used the same
distribution of surface elements. That is, the Mosaic
LSM was run on the catchment grid, even though it
made no use of the topographic information.

1) GLOBAL SOIL MOISTURE MEMORY MAPS

European Centre for Medium-Range Weather Fore-
casts (ECMWF) 0.58, 6-hourly global datasets of at-
mospheric forcing (Berg 2001) processed to allow
monthly precipitation and radiation totals to agree with
observations, and interpolated onto the catchment grid,
were used to force the NSIPP Catchment LSM and the
Mosaic LSM over the period 1979–93. We used a two-
tile approach to implement the Mosaic LSM onto the
catchment grid: one tile in each catchment was assigned
to the dominant vegetation, and the other was assigned
to bare soil. The fraction of vegetation cover was com-
puted with high-resolution land cover information for
each catchment (Guillevic et al. 2002). The NSIPP
Catchment LSM assumes one dominant land cover type,
though the model has three (four, when snow is present)

dynamic tiles corresponding to different soil moisture
regimes.

June–July–August (JJA) model diagnostics for the 15
yr were used to compute 1-month-lagged autocorrela-
tion (r ) of soil moisture in both models. Figure 2 shows
a scatterplot of the autocorrelation differences between
the two LSMs versus dryness index, / , determinedR Pn n

from the forcing alone, that is, by approximating radi-
ative surface temperature with the air temperature. The
fitted line, obtained through a simple binning procedure,
clearly shows that the NSIPP Catchment LSM tends to
have the higher memory when the dryness index is of
order 1. This is reminiscent of what was observed in
the idealized experiment (Fig. 1c), in which the NSIPP
Catchment LSM tended to have higher memory when
the monthly mean net radiation (in units of water equiv-Rn

alent) and precipitation were similar. (For reference,Pn

the two dashed lines overlaid on Fig. 2 show the ap-
proximate range of dryness index over which the NSIPP
Catchment LSM’s memory exceeded that of the Mosaic
LSM in the idealized experiment.) Figure 2 shows that
in hot, dry or cold, wet climates this relative strength
disappears. The fact that the Mosaic LSM does not pro-
duce a higher memory in the extreme climates is due
in part to its lower water holding capacity, as discussed
in the next section.

The global simulations allow a further verification
(beyond that provided by Koster and Suarez 2001) of
the ability of (4) to reproduce r. Figure 3a shows the
global distribution of r (i.e., 1-month-lagged autocor-
relation) computed from the boreal summer (JJA) data
generated by the NSIPP Catchment LSM. Figure 3b
shows the corresponding global distribution of r esti-
mated by (4). The agreement between the simulated and
estimated r values is clearly strong. Similarly, Figs. 3c
and 3d show strong agreement between simulated and
estimated r values for August for the Mosaic LSM. Such
agreement strongly supports our use of the Eq. (4) to
analyze and contrast the two LSMs.

Note, however, that August values were used instead
of JJA values in Figs. 3c,d because of some problems
with interpreting the Mosaic LSM data in June and July,
for regions north of 458. Supplemental studies with the
Mosaic LSM data show that the tiling approach used
by Mosaic—particularly our use of catchment-averaged
quantities rather than tile quantities in the memory anal-
ysis—compromises the effectiveness of (4) in high lat-
itudes during these months, possibly because of the im-
pact of recently melted snow water. Indeed, a one-tile-
per-catchment repeat of the Mosaic LSM experiment
produced an excellent agreement between simulated and
estimated r in June and July across the globe. In any
case, this limitation in high latitudes for the tile-average
quantities should be kept in mind when interpreting the
results below.

2) WATER HOLDING CAPACITY

Some prior works (e.g., Delworth and Manabe 1988)
suggest that the key LSM parameter affecting soil mois-
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FIG. 5. Plot of differences in 1-month-lagged r (JJA) vs difference
in Cs. The solid line was obtained through simple binning.

FIG. 6. The same as in Fig. 2 except experiment with identical Cs

in both LSMs. Plot of differences in 1-month-lagged (JJA) r (NSIPP
Catchment LSM minus Mosaic LSM) vs dryness index ( / ). TheR Pn n

solid line was obtained through simple binning. The two vertical lines
show the climate region (0.68 , / , 3.33) where the CatchmentR Pn n

LSM’s r is greater than that of the Mosaic LSM in the idealized
experiment (Fig. 1f ). Note that net radiation is scaled by the latent
heat of vaporization to make the ratio dimensionless.

ture memory is water holding capacity. Two of the terms
in (4) indeed include Cs directly, and Cs also appears
in the definition of Fn. A separate consideration of Cs

is thus warranted.
Figures 4a,b show the global distribution of column

water holding capacity (Cs) for the two LSMs. Since
the Mosaic LSM as employed here uses two separate
tiles within each computational catchment (one for veg-
etation and one for bare soil), and since these tiles can
be hydrologically active at different levels, an effective
Cs value was computed for each catchment following
the procedure described in Koster and Suarez (2001).
The difference in Cs between the NSIPP Catchment
LSM and the Mosaic LSM is shown in Fig. 4c. The
NSIPP Catchment LSM has the higher Cs over most of
the globe, though that in the Mosaic LSM is higher in
the Amazon and Congo River basins, in the eastern
United States, and in northeast Asia. Note that the two
LSMs define Cs in distinctly different ways. The NSIPP
Catchment LSM defines water holding capacity as the
capacity above the wilting point within the soil profile
down to the bedrock. The ISLSCP-I (Sellers et al. 1996)
global distribution of soil profile depth dataset is used
to estimate the depth to bedrock in each catchment. In
the Mosaic LSM, on the other hand, the computed ef-
fective water holding capacity is a function of the veg-
etation type and is not keyed to any dataset of soil profile
depth. Differences in Cs between the two LSMs are
therefore not surprising.

A scatterplot of the autocorrelation differences versus
differences in water holding capacity is shown in Fig.
5. A tendency for an increase in the intermodel r dif-
ference with an increase in the intermodel Cs difference
is indicated by the fitted line, obtained through a simple
binning procedure. The tremendous scatter around the
line, however, indicates that differences in water holding
capacity explain only part of the distinction in the
LSMs’ memory behaviors. The LSMs’ runoff and evap-

oration parameterization schemes (through a and c)
must also exert control over the soil moisture memory.

3) REMOVING THE IMPACT OF WATER HOLDING

CAPACITY

In order to remove the impact of water holding ca-
pacity differences on the simulated memory, we carried
out an additional 15-yr global simulation using the com-
puted effective Cs for the Mosaic LSM in the NSIPP
Catchment LSM. Figure 6 shows how the scatterplot in
Fig. 2 (autocorrelation differences between the two
LSMs vs dryness index, / ) looks when both LSMsR Pn n

use the same Cs values. The figure shows a reduction
of memory for the NSIPP Catchment LSM in hot, dry
climates when Mosaic’s Cs is used (cf. Fig. 2).

We employed (4) to characterize the intermodel r
differences. Since the same atmospheric forcing was
used in both LSMs, differences in two of the controls
in (4)—seasonality (s /s ) and persistence [cov(wn,w wn n11

Fn)/s ]—will have limited effect on the intermodel r2
wn

differences. The r differences will thus reflect the dif-
ferences in the other two terms; the variation of evap-
oration with soil moisture (c /Cs) and the variation ofRn

runoff with soil moisture (a /Cs). Furthermore, assum-Pn

ing differences in mean net radiation ( ) between theRn

two LSMs are negligible, and given the use of the same
Cs values in both LSMs, the r differences essentially
reflect differences in the values of a and c. Equation (4)
implies that higher values of a and c lead to reduced
values of soil moisture memory. The values of a and c
for each model were computed using JJA diagnostics.

A map of the differences in r between the two LSMs
(when run with identical water holding capacities) is
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FIG. 7. Experiment in which both LSMs use the same water holding capacities. (top) Map of differences in 1-
month-lagged r (JJA) (NSIPP Catchment minus Mosaic). (middle) Differences in c [Eq. (3)]. (bottom) Differences
in a [Eq. (2)].
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shown in Fig. 7a. Figures 7b,c show the global distri-
butions of the intermodel differences in c and a. The
four areas indicated in Fig. 7a serve to illustrate the
intermodel differences uncovered in this analysis.

In area A, in the eastern United States, the NSIPP
Catchment LSM shows a longer memory than the Mo-
saic LSM. This is because in area A, NSIPP Catchment’s
evaporation and runoff are less sensitive to soil moisture
variations (cf. Mosaic), as indicated by the smaller val-
ues of a and c in Figs. 7b,c. In area B (North Africa),
the lower memory of the NSIPP Catchment LSM is due
to its higher evaporation and runoff sensitivities there.
Area C, in southeast China, shows a higher memory for
the NSIPP Catchment LSM; the lower c value coun-
teracts the effect of the higher a value there. (It is im-
portant to remember here that the magnitudes of a and
c cannot be directly compared with each other; the rel-
evant quantities to compare are c and a .) Finally,R Pn n

in area D (Spain), the higher c value of the NSIPP
Catchment LSM overwhelms the effect of the lower a
value there, leading to a lower soil moisture memory.

5. Discussion and summary

In this paper, we address the problem of character-
izing intermodel differences in simulated soil moisture
memory. We use as a framework for this analysis the
autocorrelation equation, (4), derived by Koster and
Suarez (2001). The equation helps explain differences
in memory in terms of differences in the structures of
the LSMs. The relevance of the equation to this analysis
is confirmed by the agreement in Fig. 3 between the
autocorrelations estimated by the equation and those
actually simulated by the two LSMs studied.

The idealized experiment in section 4a contrasted the
LSM behaviors in a multitude of different climates, iso-
lating in particular the way in which their evaporation
and runoff production mechanisms affect simulated
memory. While the experiment was limited by the ne-
glect of land cover, soil, and water holding capacity
differences between the LSMs (a deficiency that could,
in principle, be overcome by repeating the experiment
many times, under many different sets of surface prop-
erties), it does indicate that the NSIPP catchment LSM
tends to have higher soil moisture memory when pre-
cipitation and net radiation (scaled into units of water
equivalent) are approximately in balance. A similar con-
clusion is reached through analysis of the less idealized,
global memory calculations in section 4b(1) (see Fig.
2). The reasons for the difference in model behavior
involve intermodel differences in the sensitivities of
runoff and evaporation to soil moisture, as embodied in
the parameters a and c of (4). When precipitation and
net radiation are roughly equal, the sensitivities are, for
various reasons, smaller in the NSIPP Catchment LSM
(Figs. 1d,e), and thus memory in this model is higher.
When precipitation overwhelms net radiation, the
NSIPP Catchment LSM’s baseflow rate becomes more

responsive to changes in soil moisture than the Mosaic
LSM’s drainage rate, leading to a higher a value and
thus to lower memory relative to the Mosaic LSM.
When net radiation overwhelms precipitation, the ‘‘dy-
namic wilting area’’ in the NSIPP Catchment LSM—
absent in the Mosaic LSM—gives it a higher evapo-
ration sensitivity to soil moisture (a higher c value) and
thus a lower soil moisture memory.

As an aside, we note that for seasonal prediction, the
sensitivity of evaporation to soil moisture should be
neither too high nor too low. When the sensitivity is
too high, soil moisture memory is reduced, as discussed
earlier. When it is too low, however, the atmosphere
cannot respond to a soil moisture anomaly, even if it
persists well into the forecast period (Koster and Suarez
2003). These two opposing effects suggest the existence
of an optimal, intermediate value for the sensitivity. This
is being explored in ongoing research.

The influence of intermodel differences in water hold-
ing capacity (Cs) on memory was given some attention,
given the importance that many past works on memory
have assigned to this parameter (e.g., Vinnikov and Yes-
erkepova 1991; Entin et al. 2000). Figure 5 shows that
intermodel differences in simulated memory do tend to
grow with intermodel differences in water holding ca-
pacity. The huge noise in the plot, however, indicates
that Cs is not the only parameter, and perhaps not even
the most important parameter, controlling memory. As
noted previously, and as illustrated in section 4b(3),
intermodel differences in evaporation and runoff sen-
sitivities to soil moisture also play a critical role.

An obvious question arises from this work, namely,
which of the two LSMs simulates the most realistic soil
moisture memory? Although a definitive answer to this
question cannot be given now due to a paucity of de-
cadal data on the global scale, the analysis described
earlier does point to what may be a viable approach for
evaluating global simulated memory in the near term.
First, note that a direct evaluation of simulated memory
against in situ soil moisture observations at the global
scale is hampered by the requirement of decades of
areally averaged observations, for such measurements
essentially do not exist (outside of point measurements
in Asia and Illinois), even for the present day. Global
fields of soil moisture from remotely sensed data may
overcome this deficiency, though the buildup of the nec-
essary data would, again, take decades. Simulated soil
moisture memory, however, can perhaps be validated
much sooner by validating the simulation of the physical
controls over this memory, as embodied in (4). A few
years’ worth of soil moisture, evaporation, runoff, pre-
cipitation, and net radiation data, if an appropriate mea-
surement network could be developed, might be ade-
quate to quantify the terms in (4) that the LSMs need
to match.

Given the implications of soil moisture memory to
seasonal prediction and other scientific problems, there
is an acute need to contrast and evaluate the memory



DECEMBER 2003 1145M A H A N A M A A N D K O S T E R

simulated by the various LSMs coupled to atmospheric
GCMs. The framework utilized in this paper provides
a means to perform such an analysis. Of course, when
considering coupled land–atmosphere models, analysis
of errors in simulated precipitation and net radiation is
probably just as important as analyzing the a, c, and Cs

values that underlie the LSM.
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APPENDIX

Generation of Radiation Forcing Data for the
Idealized Experiment

An approximate emissivity e of the overlying atmo-
sphere was found by regressing downward longwave
radiation (RLW) against s , where Ta is the surface air4T a

temperature and s is the Stefan–Boltzmann constant, in
a way that forces the fitted line through the origin:

4R 5 esT .LW a (A1)

The values of RLW and Ta were taken from hourly
PILPS2c data for July for 10 yr over the Red–Arkansas
River basin.

Global ISLSCP-I data (Sellers et al. 1996) for July
1987 provided 600 18 grid cells that represented well
the global variability of July 1987 radiation forcing. A
linear relationship between the monthly mean surface
air temperature ( a) and monthly accumulated net ra-T
diation ( net) was derived using linear regression anal-R
ysis between a and net of the chosen grid cells. Here,T R

net was computed through a radiation budget compu-R
tation on each grid cell, assuming that the radiative sur-
face air temperature approximately equals Ta for the
upward longwave radiation calculation. The linear re-
gression analysis yielded an equation:

T 5 0.15868 R 1 268.607.a net (A2)

To generate a set of 20 different radiation time series
for the idealized experiment, we first produced the hour-
ly time series for the chosen Red–Arkansas catch-79JulRnet

ment. We then multiplied this time series by 20 different
values of l, varying from 0.1 to 2 in increments of 0.1.
A l of 1.0 thus represents no adjustment to the original

time series. The corresponding monthly mean temper-
ature ( new) for the adjusted monthly net radiation wasT
approximated using (A2).

If the mean air temperature of the PILPS2c forcing
for the chosen catchment for July 1979 is 79Jul, theT
downward longwave radiation bias (RLW2bias) we apply
is computed as

4 4R 5 es(T 2 T ),LW2bias new 79Jul (A3)

with e taken from (A1). The surface air temperature bias
is new 2 79Jul. For the net shortwave radiation, letT T

represent the monthly total from the PILPS2c79JulRnetSW

dataset. Through energy balance considerations, we
compute an adjustment factor, lRsw, used to scale hourly
PILPS2c downward shortwave radiation for the month
of July 1979 as

79 Jul 1 1
l 5 1 1 (l 2 1)R 2 1 2 R ,Rsw net LW-bias 79 Jul1 2[ ]e R netSW

(A4)

where e is computed with (A1) and (RLW2bias) is com-
puted with (A3). The hourly PILPS2c forcing for the
month of July 1979 for the chosen catchment was ad-
justed using the above biases to obtain 20 sets of down-
ward shortwave and longwave radiation and surface air
temperature time series, one for each of the 20 values
of l (l 5 0.1, 0.2, 0.3, . . . , 2.0). For each dataset,
specific humidity of the air was adjusted to maintain the
same relative humidity as observed. The month-long
datasets so-derived were each repeated 200 times in
order to be used in conjunction with the 200-month
precipitation datasets.
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